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Peroxisome biogenesis disorders in the Zellweger spectrum (PBD-ZSD) are a heterogeneous group of genetic
disorders caused by mutations in PEX genes responsible for normal peroxisome assembly and functions. As a
result of impaired peroxisomal activities, individuals with PBD-ZSD can manifest a complex spectrum of clinical
phenotypes that typically result in shortened life spans. The extreme variability in diseasemanifestation ranging
from onset of profound neurologic symptoms in newborns to progressive degenerative disease in adults presents
practical challenges in disease diagnosis andmedical management. Recent advances in biochemical methods for
newborn screening and genetic testing have provided unprecedented opportunities for identifying patients at
the earliest possible time and defining the molecular bases for their diseases. Here, we provide an overview of
current clinical approaches for the diagnosis of PBD-ZSD and provide broad guidelines for the treatment of
disease in its wide variety of forms. Althoughwe anticipate future progress in the development ofmore effective
targeted interventions, the current guidelines are meant to provide a starting point for themanagement of these
complex conditions in the context of personalized health care.
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1. Definition, nomenclature, and epidemiology

Peroxisomes are membrane-bound organelles found within almost
all eukaryotic cells [1]. They are formed through replication by fission
(the major pathway for peroxisome formation) or can originate from
the endoplasmic reticulum (ER) through a de novoprocess [2]. Contained
within the peroxisome matrix of mammalian cells are over 70 distinct
enzymes required for normal lipid metabolism and a host of other
biochemical processes critical for normal health and development [3].

Peroxisome biogenesis disorders (PBDs) are autosomal recessive
disorders that are characterized by defective peroxisome biosynthesis,
assembly, and biochemical functions [4]. Although it is estimated that
1 in 50,000 births are affected by PBDs in North America [5], these
estimates may increase with the introduction of newborn screening
for peroxisomal disorders across the United States [6]. PBDs are primar-
ily caused by mutations in any of 14 different PEX genes, which code
for peroxins, proteins involved in peroxisome assembly [5,7]. While
mutations in PEX1 account for nearly 70% of all PBD-ZSD cases, another
26% of cases are caused by mutations in PEX6, PEX10, PEX12, or PEX26,
with the majority of these cases involving PEX6 mutations [8,9].

PBDs are divided into 2 groups: Zellweger spectrum disorder (PBD-
ZSD) and rhizomelic chondrodysplasia punctata type 1 [10,11].
The treatment guidelines presented here will refer only to PBD-ZSD.
Prior to the discovery of their shared peroxisomal basis, three different
Table 1
Clinical features of PBD-ZSD: severity, age of onset, and suggested treatments.

Clinical features Neonate 1–6 months 6 mon

Neuronal migration disorder S
Chondrodysplasia punctata S
Renal cortical microcysts S
Respiratory compromise S S
Craniofacial dysmorphism S, I I, M
Direct hyperbilirubinemia S, I, M I, M
Liver dysfunction, hepatomegaly S I, M
Failure to thrive, small size, hypotonia and poor feeding S, I I, M I, M
Seizures S I, M I, M
Adrenal insufficiency S I, M I, M
Cataracts S I, M I, M
Retinal degeneration I, M
Sensorineural hearing loss S I, M I, M
Psychomotor retardation S I, M I, M
Leukodystrophy I I
Osteopenia I
Calcium oxalate renal stones I, M
Peripheral neuropathy M
Cerebellar ataxia M
Enamel hypoplasia

Abbreviations: S, severe; I, intermediate; M, mild; G-tube, gastrostomy tube.
syndromes were historically described: Zellweger syndrome (ZS),
also referred to as cerebrohepatorenal syndrome; neonatal adreno-
leukodystrophy (NALD), and infantile Refsum disease (IRD) [12].
We recommend replacing these names with the overall classification
of peroxisome biogenesis disorders in the Zellweger spectrum (PBD-
ZSD), ranging from severe (ZS), intermediate (NALD), and mild (IRD)
phenotypes, respectively. The purpose of this recommendation is to
highlight the fact that the individual clinical pictures are along a spec-
trum of disease severity and often do not fit into the original assigned
categories. Additionally, we now also recognize a group of PBD-ZSD pa-
tients who do not exhibit the vision and hearing loss usually described
in PBD-ZSD, and instead present with peripheral neuropathy and/or
cerebellar ataxia [13–15]. Other variant phenotypes continue to be
described [16,17]. These patients would be diagnosed as intermediate
or mild within the PBD-ZSD spectrum. Table 1 summarizes the clinical
features observed in PBD-ZSD based on disease severity and age of
symptom appearance. Symptom expression in most patients has an
age-dependent component related to disease severity and considerable
overlap exists among patients with severe, intermediate and milder
phenotypes. Although the relative proportions of certain features
were reported in one cohort with a subset of PEX genotypes [18], the
prevalence and timing of all outcomes amongst PBD-ZSD patients is
not yet adequately described, nor is the risk known for individual
patients to develop various postnatal features.
ths–4 years N4 years Suggested treatments (if available)

Oxygen support

Vitamin K supplementation, primary bile acid therapy
M Feeding therapy, G-tube placement, vitamins A, D, E, and K
M Antiepileptic drugs
M Hydrocortisone (Cortef)
M Cataract removal
M Corrective lenses
M Hearing aid, cochlear implant
M Physical/occupational therapy
M
I, M Vitamin D, calcium, bisphosphonate treatment
I, M Increased fluid intake, urine alkalinization
M
M
I, M Bonding, repair of permanent teeth



315N.E. Braverman et al. / Molecular Genetics and Metabolism 117 (2016) 313–321
2. Laboratory diagnostic criteria

2.1. Traditional biochemical testing

Since their initial discovery, an increasing number of biochemical
functions have been ascribed to peroxisomes including β-oxidation
of very long chain fatty acids (VLCFA, 24 carbons or longer) and pristanic
acid, phytanic acid α-oxidation, pipecolic acid metabolism, ether
glycerolipid (plasmalogen), bile acid biosynthesis, and subcellular local-
ization of catalase (Table 2) [3]. PBDs can be diagnosed by demonstrat-
ing abnormalities in several peroxisome biochemical functions that can
be monitored in bodily fluids (Fig. 1). The primary step in PBD-ZSD di-
agnosis generally involves the detection of elevated VLCFA in a fasting
plasma sample [19]. Elevations of C26:0 and C26:1 fatty acids and the
ratios of C24:0/C22:0 and C26:0/C22:0 are consistentwith a peroxisom-
al fatty acid β-oxidation defect [5]. Although usually abnormal on a
blood specimen drawn randomly during the day, equivocal results, for
example, in the case of elevated C26:0 with normal or near normal ra-
tios of 24:0/22:0 and 26:0/22:0, and a high total lipid fatty acid content,
measurements should be repeated on a plasma sample after overnight
fasting. False positive results have rarely been reported, although this
can occur if patients are on a ketogenic diet [20,21]. Additional studies
demonstrating defects in multiple peroxisome enzyme pathways are
necessary to diagnose PBD-ZSD, such as measurement of the methyl-
branched fatty acids phytanic and pristanic acids, erythrocyte
plasmalogens, pipecolic acid in plasma and/or urine, and the bile acid inter-
mediates dihydroxycholestanoic acid (DHCA) and trihydroxycholestanoic
acid (THCA) in plasma and/or urine [11]. Reduced levels of erythrocyte
plasmalogens, whose biosynthesis is dependent on peroxisome
function, may be observed depending on disease severity [5]. It should
be noted that pipecolic acid levels are more likely to be abnormal in
urine in the newborn period, and more abnormal in plasma in later
ages [22–24]. Additionally, phytanic and pristanic acids may not be
elevated in newborn infants who are not consuming dairy products or
other dietary sources of these fatty acids [19]. Owing to defective
biosynthesis in liver peroxisomes of the final C24 bile acids, cholic and
deoxycholic acids, there is elevation of C27 bile acid intermediates,
DHCA and THCA, in blood and urine [3].

Biochemical testing of skin fibroblasts is useful to confirm the me-
tabolite abnormalities seen in the blood and urine and clarify question-
able results in body fluids. The biochemical assays most frequently used
in fibroblasts involve quantifying phytanic and pristanic acid oxidation,
VLCFA accumulation and/or oxidation and plasmalogen biosynthesis
[19]. Cultured skin fibroblasts are also valuable for establishing the
subcellular localization of peroxisomalmatrix proteins, such as catalase,
which can distinguish PBD-ZSD fromphenotypically similar peroxisom-
al single enzyme deficiencies [25].

Approximately 10–15% of suspected PBD-ZSDpatientswith elevated
VLCFAs will not have PBD-ZSD, but a single β-oxidation enzyme defect
in very long chain acyl-CoA oxidase (ACOX1) [26] or D-bifunctional
protein (HSD17B4) [27]. The clinical phenotypes of these patients
Table 2
Diagnostically useful tests of peroxisome function in PBD-ZSD.

Peroxisomal function Tissue/cells
tested

β-Oxidation of VLCFA Plasma/cultured fibroblast
β-Oxidation of branched-chain fatty acids (pristanic acid) Plasma/cultured fibroblast
α-Oxidation of branched-chain fatty acids (phytanic acid) Plasma/cultured fibroblast
Ether glycerolipid (plasmalogen) biosynthesis RBC/cultured fibroblasts
Bile acid synthesis Plasma/urine
Pipecolic acid oxidation Plasma/urine
Catalase subcellular localization Fibroblasts

Abbreviations: PBD-ZSD, peroxisome biogenesis disorder-Zellweger spectrum disorder; RBC, re
trihydroxycholestanoic acid.
overlap that of PBD-ZSD. Other overlapping phenotypes include single
enzyme/protein defects in branched chain fatty acid and bile acid
metabolism, including α-methyl-acyl CoA racemase (AMACR) [28],
phytanoyl-Coenzyme A hydroxylase (PHYH) [29], PEX7 [30] and sterol
carrier protein X (SCPx) [31].

It is important to not rely on VLCFA screening alone for patients
who are strongly suspected to have PBD-ZSD. In a small number of
cases, mutations in PEX genes such as PEX2, PEX10, PEX12, PEX16
and PEX11B have been identified in patients with mild or absent
elevations in VLCFA [9,13,32–35]. Consequently, testing for multiple
biochemical functions in patients or obtaining biochemical studies on
patient-derived fibroblasts and genetic testing may be necessary for
proper diagnosis.

2.2. Genetic diagnostic testing

Next-generation sequencing panels for PEX genes are being used
more frequently as a confirmatory test, and may be required for perox-
isome disorders that are difficult to resolve by traditional biochemical
methods [16,17,34,36–38]. These DNA tests are available on a clinical
basis. Identification of mutations may have prognostic value [39]. For
example, patients with two PEX null alleles generally have a severe
phenotype, and those patients who carry the common PEX1-p.G843D
allele are predicted to have a milder phenotype [40]. Homozygosity
for PEX1-p.G843D typically predicts a milder phenotype, but even in
this category there is a range of intellectual impairment to normal intel-
lect, indicating thatmodifier genes, as yet to be identified, are influential
[16,18]. The outcome of the combination of a PEX null allele with a
missense allele can range from intermediate tomilder, and this depends
on the residual function of the missense allele. In a recent publication
[17], certain missense alleles in PEX1 and PEX6, in combination with
null alleles, defined a group of PBD-ZSD patients with normal intellect.
In addition, patients with mutations in the region encoding the zinc fin-
ger domain of PEX2, PEX12 and PEX10, and certain mutations in PEX16
[13–15] exhibit variant phenotypes. In contrast to biochemical tests,
mutation analysis will also identify heterozygous carriers, which will
allow reliable genetic counseling of families andmay assist with eligibil-
ity for future clinical trials.

2.3. Newborn screening

The combination of liquid chromatography and tandem mass spec-
trometry (LC–MS/MS) to detect elevated levels of VLCFAs in newborn
blood spots has been validated as a diagnostic approach for X-linked ad-
renoleukodystrophy (X-ALD), a related peroxisomal disorder [6,41,42].
Legislation for X-ALDnewborn screeninghas passed inNew Jersey, Con-
necticut, Illinois, Tennessee and California and screening has begun in
New York; continued legislative efforts are expected to expand through
movements initiated by patient families and advocacy organizations to
lobby their state legislatures. Recently, the Department of Health and
Human Services Advisory Committee for Heritable Disorders for
Findings in PBD-ZSD

s Elevated VLCFA in plasma, cells; deficient VLCFA oxidation in cells
s Elevated pristanic acid in plasma; deficient pristanic acid oxidation in cells
s Elevated phytanic acid in plasma; deficient phytanic acid oxidation in cells

Deficiency of RBC plasmalogens; deficient biosynthesis of plasmalogens in cells
Accumulation of C27 bile acids, DHCA and THCA
Elevated pipecolic acid in plasma and urine
Deficient peroxisomal catalase and elevated cytosolic catalase

d blood cell; VLCFA, very long-chain fatty acids; DHCA, dihydroxycholestanoic acid; THCA,



Fig. 1. Diagnostic criteria flowchart for PBD-ZSD. Given the current availability of next generation sequencing panels, clinicians have moved from evaluation of biochemical markers to
genetic analysis future reproductive options, carrier testing in relatives, eligibility purposes in clinical trials and for patients that are difficult to diagnose. In difficult cases, it may still be
necessary to evaluate cultured fibroblasts, and this may be important also to ascertain responses of specific mutations for future interventional trials. Abbreviations: PBD-ZSD,
peroxisome biogenesis disorder-Zellweger spectrum disorder; X-ALD, X-linked adrenoleukodystrophy; VLCFA, very long chain fatty acids.
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Newborns and Children voted to propose the addition of X-ALD
screening in the Recommend Uniform Screening Panel. The implica-
tions of X-ALDnewborn screening include the ability to perform clinical
surveillance for early detection of symptom onset and treatment
for affected males and counseling for carrier females [43]. Newborn
screening for X-ALD should also detect the majority of PBD-ZSD cases
that feature elevated blood VLCFA levels, thereby permitting early
diagnosis and determination of accurate incidence estimates. As
newborn screening expands in the future, the diagnostic approach for
PBD-ZSDs will necessarily be revised towardmore confirmatory testing
as seen in other newborn screening diseases. It is anticipated that the
clinical phenotype of PBD-ZSD will be expanded as variant patients
are identified.
2.4. Prenatal diagnosis of PBD-ZSD

Prenatal diagnosis of PBD-ZSD can be accomplished in the first or
second trimester using biochemical or genetic testing of chorionic villi
cells or cultured amniocytes. Preimplantation genetic diagnosis can
also be performed when the PEX gene mutations are known [44].
3. Management and treatment guidelines

PBD-ZSD is a multi-organ disease, as peroxisomes are involved in
critical metabolic pathways in nearly all the cells of the body from
fetal development throughout adult life [4]. The wide variation in
clinical severity and rate of disease progression adds complexity to the
medical management of the group as a whole. With the recognition
that some manifestations of PBD-ZSD arise during fetal development
and cannot be reversed, particularly any brain dysplasia, therapeutic
expectations for some neurologic symptomsmust be tempered. Never-
theless, additional medical issues arise postnatally that can benefit from
current therapy. At this time, treatment of any manifestations of PBD-
ZSD focuses largely on symptomatic or supportive therapies. The
following guidelines are meant as a starting point for management of
these complex conditions for personalized medical care.

3.1. Clinical evaluations following initial diagnosis

Table 3 summarizes recommended clinical evaluations at the time
of the initial diagnosis of PBD-ZSD to establish the extent of disease
and later in life as symptoms appear. It is likely that some of the



Table 3
Recommended evaluations for PBD-ZSD patients.

Symptoms Specific examinations Suspected findings in severe PBD-ZSD Suspected findings in
intermediate/mild PBD-ZSD

Growth failure Height, weight and head circumference, nutritional
evaluation

Poor growth, feeding difficulties, fat
soluble vitamin deficiency

Poor growth, feeding difficulties, fat soluble
vitamin deficiency

Deafness Hearing testing, brainstem auditory evoked responses Bilateral sensorineural deafness Progressive bilateral sensorineural hearing
loss, deafness

Visual impairment Ophthalmologic exam, visual fields, fundus
photography, OCT

Cataracts, glaucoma, optic nerve
hypoplasia

Progressive retinal dystrophy, blindness,
band keratopathy

Neurological Brain MRI, EEG, nerve conduction studies Hypotonia, neuronal migration defects
on MRI, neonatal seizures

Hypotonia, leukodystrophy, cerebellar
atrophy on MRI, seizures, peripheral
neuropathy, ataxia

Hepatic dysfunction AST, ALT, GGT, bilirubin, albumin, alkaline
phosphatase, bile acids (intermediate C27 and mature
C24 bile acids, PT, PTT, abdominal ultrasound

Hepatomegaly, elevated
transaminases, cholestasis, defective
synthetic functions, portal
hypertension,

Same as severe ZSD, but milder

Renal insufficiency Serum creatinine, BUN, abdominal ultrasound, urine
oxalate

Renal cortical cysts Calcium oxalate renal stones

Adrenal insufficiency,
hyponatremia, hypotension,
vomiting

Adrenal function tests, early morning (8 am) cortisol
and ACTH, ACTH stimulation test

Progressive adrenal insufficiency Progressive adrenal insufficiency

Skeletal abnormalities,
fractures

X-rays, DXA scan, serum calcium and phosphorous,
alkaline phosphatase

Chondrodysplasia punctata, hips and
knees

Low bone mineral density, pathological
fractures

Dental Dental exam, X-rays Enamel hypoplasia of secondary teeth
Psychomotor retardation Developmental assessment Few developmental milestones gained Delayed milestones with broad range of

achievement from cognitive delay to normal
cognition

Abbreviations: PBD-ZSD, peroxisome biogenesis disorder-Zellweger spectrum disorder; ERG, electroretinogram; OCT, optical coherence tomography; MRI, magnetic resonance imaging;
EEG, electrocephalogram; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyltransferase; PT, prothrombin time; PTT, partial thromboplastin time;
BUN, blood urea nitrogen; ACTH, adrenocorticotropic hormone; DXA, dual-energy x-ray absorptiometry.
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recommended evaluationswill have been completed by the time a PBD-
ZSD diagnosis has been confirmed. Patients should be re-evaluated
yearly (or more frequently) to detect progression of disease and begin
timely therapy.

Severe PBD-ZSD patients present in the neonatal period and have
developmental malformations of the brain, kidneys and skeleton
(Table 1). They have a more predictable clinical course than milder
forms of PBD-ZSD. There is a characteristic craniofacial dysmorphology
that includes an enlarged fontanelle, prominent forehead, epicanthal
folds, hypertelorism, a broad, flat nasal bridge and migronathia [5,45].
Neonatal seizures, severe hypotonia and developmental delays are
consequent to neuronal migrations defects that characteristically
appear as polymicrogyria and heterotopias on brain magnetic
resonance imaging [46]. Renal micronodular cortical cysts can be
observed by renal ultrasound and are not usually symptomatic. An
enlarged liver with dysfunction of the hepatocellular and biliary
system is typically present. Due to the severe hypotonia, feeding
difficulties are often prominent, as well as laryngomalacia and
other respiratory dysfunction [45]. Developmental progress is usual-
ly minimal. For seizure control, standard antiepileptic drugs (AED)
may be used. No type of AED is contraindicated, although certain
medications that have respiratory suppressive effects must be
avoided if respiratory compromise is present. Seizures may be diffi-
cult to control despite use of appropriate medication. Feeding prob-
lems may require the placement of a gastrostomy tube (G-tube).
With regards to respiratory therapy, use of nasal cannula for oxygen
may be necessary as the disease progresses. The transition to a more
aggressive type of respiratory support is a decision that should be
discussed between the family and medical care team with informed
expectations about survival and quality of life. Overall, for severe
PBD-ZSD, seizure control, feeding and respiratory support are often
the main focus for management, although additional interventions
as described below may also be valuable for quality of life.

For the majority of patients who present with intermediate or
milder PBD-ZSD, the details of the management are discussed below.
3.2. Feeding and nutrition

Many PBD-ZSD children have significant food selectivity and the
involvement of a behavioral feeding program is often indicated in the
older PBD-ZSD child. Supplying adequate calorie intake for affected
children may entail the placement of a G-tube to allow simpler home
management. With many children having some degree of malabsorp-
tion due to bile acid deficiency, elemental formulas may be better
tolerated.

Currently, there is no specific diet that is recommended for PBD-ZSD
patients. Although VLCFA levels are elevated in the tissues and body
fluids of PBD-ZSD patients, it is unclear as to whether a reduction in di-
etary VLCFAwill prevent the progression of the disease or its associated
symptoms [47]. A reduction in dietary VLCFA alone has not been shown
to reduce blood VLCFA levels [48], as the body producesmost VLCFA en-
dogenously. PlasmaVLCFA levels are decreased only by the combination
of dietary reduction of VLCFA and supplementation with Lorenzo's oil
(a 4:1 mixture of glyceryl trioleate and glyceryl trierucate) in X-ALD
patients [49], but this does not affect the progression of an already
established leukodystrophy [50–52]. Moreover, increased dietary
monounsaturated fatty acids in Lorenzo's oil may be contraindicated
in PBD-ZSD patients who already accumulate large amounts of C26:1
due to defective VLCFA oxidation [53]. Finally, the effects of these
dietary interventions have not been studied in PBD-ZSD patients.

Phytanic acid is a methyl branched-chain fatty acid exclusively ob-
tained from dietary sources such as ruminant fats, dairy products, and
certain fish [54]. As such, it can be eliminated by dietary restriction
[54]. There is a minor amount of phytanic acid in human breast milk
[55]. Dietary restriction of phytanic acid might be considered, since
high phytanic acid levels over time could contribute to disease through
mechanisms similar to that observed in adult Refsum disease [56,57]. In
contrast tomost patients with adult Refsum disease, however, PBD-ZSD
patients tend to have normal or lower plasma phytanic acid levels [58]
and no studies have demonstrated specific effects of phytanic acid
accumulation from other peroxisomal defects in PBD-ZSD patients.
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Until definitive studies are conducted, it seems reasonable to monitor
plasma phytanic acid levels and consider dietary modification if levels
become excessive.

Since PBD-ZSD patients have impaired endogenous synthesis of
docosahexaenoic acid (DHA) [59], and DHA is important in brain and
retinal development and function, supplementation with DHA, was
previously recommended. However, a placebo-controlled study showed
no clinical benefit of DHA supplementation in enrolled patients in the
PBD-ZSD spectrum. [60]. Owing to defective bile acid synthesis, supple-
ments of the fat-soluble vitamins, A, D, E, and K are recommended.

3.3. Liver

To help support liver function, supplementation of vitamin K at a
dose of 2.5 mg–5 mg per day is recommended. Bile acid metabolism is
altered in PBD-ZSD [61,62], and primary bile acid therapy (cholic acid
and chenodeoxycholic acid) may improve liver function by reducing
the accumulation of abnormal bile acid precursors, such as DHCA and
THCA [63,64]. Recently, cholic acid (Cholbam) has been approved by
the United States Food and Drug Administration to treat peroxisomal
disorders, including PBD-ZSD [65]. The available studies evaluating the
effectiveness of bile acid therapy in PBD-ZSD are limited and may
have differential effects depending on the severity of the disease. Coag-
ulation factors and other synthetic liver functions should bemonitored.
Persons with overt liver dysfunction require more frequent monitoring
and may benefit from referral to a gastroenterologist. Liver dysfunction
may lead to varices that respond to appropriate therapies.

3.4. Hearing

Many patients with PBD-ZSD have some degree of hearing loss [66];
auditory functions should therefore be evaluated annually in children
affected with PBD-ZSD. Hearing aids should be used in children found
to have substantive hearing loss. Cochlear implants have been effective-
ly placed in PBD-ZSD childrenwhenhearing loss is severe and cannot be
compensated by hearing aids. In such instances, improvements in envi-
ronmental awareness, and in some circumstances, speech, have been
frequently noted in other syndromes with congenital deafness [67].

3.5. Vision

Vision loss is commonly seen with PBD-ZSD due to retinal dystrophy
and optic nerve abnormalities [16,68,69]. Therefore, periodic ophthal-
mologic evaluations are indicated. Although cataracts are rare, if
present, their removal in early infancy may preserve vision with the
understanding that retinal dysfunctionmay later develop. Glasses should
be used, as needed, to correct refractive errors. In children with con-
firmed PBD-ZSD, there appears to be no value in performing multiple
electroretinograms (ERG) to assess functional vision. ERG testing has
not been demonstrated to be predictive of vision and does not provide
an index of progression [60]. Performing optical coherence tomography
in children who can cooperate by looking directly at a light source may
be useful for defining and monitoring retinal health. For children with
both hearing and vision impairment, enrollment in the deaf-blind
community is strongly encouraged. Appropriate resources include the
National Family Association for Deaf–Blind (http://www.nfadb.org)
and the National Center on Deaf–Blindness (https://nationaldb.org),
which can provide connections to individual state deaf-blind projects.

3.6. Neurological function

Seizures have been observed in the neonatal period in nearly all
severely affected PBD-ZSD patients [70], and have been reported in
23% of less severe patients [18]. EEGs can determine the frequency
and duration of seizures and should be performed whenever changes
in seizure activity are suspected. Common medications used to control
seizures in children affected by PBD-ZSD are levetiracetam, phenobarbi-
tal, clonazepam, topiramate, and lamotrigine.

PBD-ZSD patients can also develop a leukodystrophy [18,64], which
can be silent, arrested or progressive. We recommend a baseline MRI of
the brain, followed by additional studies if clinically indicated. Identifi-
cation of white matter changes can have prognostic significance for
changes in cognitive, behavioral and/or motor abilities.

Evaluation for early physical, occupational and speech therapy is rec-
ommended for all children with PBD-ZSD. Therefore, early intervention
services should be provided.

3.7. Bone

Children with severe PBD-ZSDmay have chondrodysplasia punctata
or stippling seen at the growth plates. Decreased bone mineral density
that worsens over time is associated with intermediate and milder
forms of PBD-ZSD and pathologic fractures have occurred in some
patients with no evidence of trauma. The incidence of bone disease in
the course of PBD-ZSD has not been systematically studied. In patients
who are older than 1 year and are non-weight bearing, or have had
previous fractures, evaluation for bone disease should be considered.
This should include dual-energy x-ray absorptiometry (DXA) that has
been well-validated in pediatric patients. Evaluation of vitamin D status
is also recommended. At the discretion of the clinician, markers of bone
turnover such as phosphorus and parathyroid hormone levels may also
be evaluated.

Regarding treatment of bone disease in PBD-ZSD, a recent study has
reported successful treatment with bisphosphonate medications in a
PBD-ZSD patient [71]. Bisphosphonate therapy should be carefully con-
sidered in consultation with an experienced metabolic bone specialist.
Additionally, weight bearing physical activity has shown to slow bone
loss in children and therefore prevent fractures [72].

3.8. Teeth

Dental examination should be performed every 6 months. Many
children with PBD-ZSD have enamel abnormalities of permanent teeth
and should receive appropriate dental care [73–75].

3.9. Adrenal insufficiency

As with other peroxisomal disorders, particularly X-ALD, primary
adrenal insufficiency has occurred in PBD-ZSD. A recent study reported
a high prevalence of primary adrenal insufficiency in a population of 29
PBD-ZSD patients [76]. It is recommended that after one year of age,
yearly (or more frequent) adrenal monitoring with adrenocorticotropic
hormone (ACTH) and morning cortisol be performed. Treatment with
adrenal replacement using standard dosing should be instituted if
abnormal. Families and clinicians should be aware of the possibility of
adrenal insufficiency and consider stress dosing in periods of sudden
severe illness, fever, and major surgical procedures.

3.10. Kidney

Children affected by PBD-ZSD, particularly older children (≥4–
6 years), should be monitored for hyperoxaluria, which can lead to
kidney stone formation and renal failure [77]. This can be determined
by measuring oxalic acid and creatinine in the urine. Kidney ultrasound
may be useful to detect renal stones.

3.11. Other recommendations

It is also recommended that all patients on the PBD-ZSD spectrum
should be vaccinated against influenza and respiratory syncytial virus
yearly, in addition to the normal course of vaccination for other child-
hood diseases.

http://www.nfadb.org
https://nationaldb.org
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4. Future directions

The treatment guidelines discussed herein provide a starting point
for the personalizedmanagement of PBD-ZSD based on currentmedical
practice; however, we anticipate these guidelines will evolve over time
as emerging therapeutic strategies for PBDs are tested in laboratory
settings and eventually in clinical trials. A robust portfolio of in vitro
andwhole organismmodels of PBD-ZSDprovides the basis for laborato-
ry research. Cultured patient cells, including skin fibroblasts, have
provided invaluable for screening and testing drug therapies in vitro
[78]. Most recently, PBD-ZSD patient-derived skin fibroblasts have
been reprogrammed into induced pluripotent stem cells (iPSCs) that
were differentiated into neural and hepatic cell models of disease that
could be used in drug screening and testing efforts [79]. There are
several genetically engineered mouse models of PEX gene defects [80],
including a model of the common PEX1 p.G843D mutation [81]. In
addition, a host of invertebrate models of PBD-ZSD exist including
genetically engineered worms, fruit flies, and zebrafish [82]. All provide
opportunities to screen for and/or test specific therapies on the scale of
the whole organism.

The principal strategies being actively pursued include high-content
screening of large chemical libraries for compounds that improve
peroxisome assembly and function, as well as gene and cellular
therapies. Seminal screening studies identified betaine as a potential
molecular chaperone that can improve peroxisome assembly in
cultured cells from PBD-ZSD patients with PEX1 p.G843D mutations
[78]. Candidate drug screens identified arginine as another potential
molecular chaperone in patient cell lines [83]. Larger-scale drug screens
are currently being conducted at the National Center for Advancing
Translational Sciences at the National Institutes of Health (Hacia,
personal communication). Advances in gene therapy, including the
emergence of adeno-associated virus (AAV) gene delivery systems,
provide hope for the treatment of numerous genetic disorders, includ-
ing PBD-ZSD. Multiple successful retinal gene augmentation trials for
Leber congenital amaurosis (LCA) [84], a rare inherited eye disease, is
of special relevance of PBD-ZSD. Currently, AAV9-mediated gene
augmentation therapy for vision loss in PBD-ZSD is being developed
and will be tested in mouse models of milder forms of PBD-ZSD
(Bennett, personal communication). Given that PBD-ZSD is a multi-
systemic disease, gene therapy aimed at correcting peroxisome assem-
bly in other organs, most notably the central nervous system (CNS) and
the liver, is of great interest to themedical research community. Finally,
we recognize potential therapeutic opportunities for cellular therapies,
including the transplant of cell types and cell lineages affected in PBD-
ZSD patients.

5. Concluding remarks

With greater understanding of the full range of severity seen in PBD-
ZSD, physicians can transition to a more targeted approach to support-
ive therapies. Vision and hearing interventions, nutrition provisions,
along with monitoring for adrenal insufficiency, renal stones, bone
density and dental enamel defects, can all enhance quality of life for
PBD-ZSD patients. Further research into all of the variation in PBD-ZSD
children is urgently needed in order to provide more evidence-based
guidelines. Our established ongoing longitudinal natural history study
on PBD-ZSDwill help us acquire and disseminate information regarding
this disease, and to identify accurate clinical endpoints for future inter-
ventional trials (https://clinicaltrials.gov/ct2/show/NCT01668186?
term=NCT01668186&rank=1).
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